JEE-Main-30-01-2024 (Memory Based) [EVENING SHIFT]

Physics

Question: Two polarisers A and B are kept one after the other. Their pass axis makes an angle of 45 with each other. An unpolarized light of intensity I_{0} strikes A first and then B. Find the intensity of the light emergent from B.

Options:

(a) $\frac{I_{0}}{2}$
(b) $\frac{I_{0}}{4}$
(c) $\frac{I_{0}}{8}$
(d) $\frac{I_{0}}{6}$

Answer: (b)
Question: Simple pendulum of length ' $l=4$ ' is taken to height ' R ' above earth surface calculate time period at its height $\left\{\mathrm{R} \rightarrow\right.$ Radius of Earth \& Taken $\left.\pi^{2}=\mathrm{g}\right\}$

Options:

(a) 4 sec
(b) 8 sec
(c) 2 sec
(d) 10 sec

Answer: (b)

Question: If for a given planet $R_{P}=\frac{1}{3} R_{E} \& M_{P}=\frac{1}{6} M_{E}$ then find the escape speed for this planet if the escape speed of earth is $11.2 \mathrm{~km} / \mathrm{hr}$
Options:
(a) $7.9 \mathrm{~km} / \mathrm{hr}$
(b) $11.2 \mathrm{~km} / \mathrm{hr}$
(c) $7.9 \mathrm{~m} / \mathrm{s}$
(d) $8.5 \mathrm{~m} / \mathrm{s}$

Answer: (a)

Question: A block of mass 1 kg is pulled up on an inclined plane 60° by a force of 10 N .
Coefficient of friction is $\mu=0.1$. Find the magnitude of Work done by the friction by the time block moves up by 10 m .

Options:

(a) $5 \times 10^{-2} \mathrm{~J}$
(b) 5 J
(c) 5000 J
(d) 500 J

Answer: (b)
Question: Find the Tension $\mathrm{T}_{1} \& \mathrm{~T}_{2}$ in the given system

Options:

(a) $\mathrm{T}_{1}=40, \mathrm{~T}_{2}=64$
(b) $\mathrm{T}_{1}=64, \mathrm{~T}_{2}=40$
(c) $\mathrm{T}_{1}=30, \mathrm{~T}_{2}=64$
(d) $\mathrm{T}_{1}=40, \mathrm{~T}_{2}=30$

Answer: (a)
Question: Find value of P is the dimensional equation
$\mathrm{M}^{1}=\left[\mathrm{C}^{\mathrm{P}} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}\right]$
(1) $\rightarrow C \rightarrow$ speed of light
(2) \rightarrow G \rightarrow Universal gravitational constant
(3) $\rightarrow \mathrm{h} \rightarrow$ Planck's constant

Options:

(a) 1
(b) $1 / 2$
(c) $-1 / 2$
(d) -1

Answer: (b)

Question: Charge -q rotating around infinite long wire having charge density ρ at distance r then calculate the time period of that -q Charge.

Options:

(a) $2 \pi \sqrt{\frac{m r^{2}}{2 k \rho q}}$
(b) $\pi \sqrt{\frac{m r^{2}}{2 k \rho q}}$
(c) $2 \pi \sqrt{\frac{m r^{2}}{k \rho q}}$
(d) $\pi \sqrt{\frac{m r^{2}}{k \rho q}}$

Answer: (a)

Question: Match the following

A	$\oint \vec{B} \cdot d \vec{A}=0$	P	Faraday \& lenz's law
B	$\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{E_{0}}$	Q	Gauss law on magnetism
C	$\oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{(\text {enclosed })}$	R	Ampere's law

D	$\phi \vec{E} \cdot d \vec{l}=\frac{-d \phi_{8}}{d t}$	S	Gauss law of Electrostatics

Options:

(a) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{R}, \mathrm{D} \rightarrow \mathrm{P}$
(b) $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{R}$
(c) $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{C} \rightarrow \mathrm{R}, \mathrm{D} \rightarrow \mathrm{P}$
(d) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{R}$

Answer: (a)
Question: If 1000 drops of surface energy E_{1} are merged to form 1 bigger drop of Surface Energy E_{2} then E_{1} / E_{2} is \qquad
Question: 2 moles of monatomic gas ($\gamma=3 / 2$) is mixed with 3 moles of diatomic gas ($\gamma=5 / 7$).
Find γ of the mixture here $\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$.

Options:

(a) $5 / 3$
(b) $29 / 19$
(c) $11 / 7$
(d) $39 / 29$

Answer: (b)

Question: Magnetic field at ' 0 ' is $\mathbf{x} \sqrt{2} \times 10^{-7}$ Tesla. Find x.

Options:

Answer: (40)
Question: Magnetic moment of electron is proportional to n^{p} find P

Options:

(a) 3
(b) 2
(c) 4
(d) 1

Answer: (d)

Question: Heat developed in wire is H if wire is cut in 2 equal parts and joined in parallel then new heat dissipated will be?
Options:
(a) H
(b) 2 H
(c) 3 H
(d) 4 H

Answer: (d)

Question: Number of spectral line for $\mathrm{He}+$ for Transition from $\mathrm{n}=5$ to 1

Options:

(a) 6
(b) 10
(c) 12
(d) 3

Answer: (b)
Question: Find the Voltage Across $2.5 \mathrm{k} \Omega$
$1.5 \mathrm{k} \Omega$

$2.5 \mathrm{k} \Omega$

Options:

(a) 8.75 V
(b) 7.75 V
(c) 6.75 V
(d) 5.75 V

Answer: (a)

Question: A disc of Moment of inertia $4 \mathrm{kgm}^{2}$ is spinning freely at $10 \mathrm{rad} / \mathrm{s}$, a second disc of Moment of Inertia $2 \mathrm{Kgm}^{2}$ at angular speed 4 rad.s is put on the first disc and finally they both rotate with same angular speed. What is the change in KE?
Answer: (24)

